Comment on 'Monte Carlo simulation study of the two-stage percolation transition in enhanced binary trees'

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2009 J. Phys. A: Math. Theor. 42478001
(http://iopscience.iop.org/1751-8121/42/47/478001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.156
The article was downloaded on 03/06/2010 at 08:24

Please note that terms and conditions apply.

COMMENTS AND REPLIES

Comment on 'Monte Carlo simulation study of the two-stage percolation transition in enhanced binary trees'

Seung Ki Baek ${ }^{1}$, Petter Minnhagen ${ }^{1}$ and Beom Jun Kim ${ }^{2}$
${ }^{1}$ Department of Theoretical Physics, Umeå University, 90187 Umeå, Sweden
${ }^{2}$ BK21 Physics Research Division and Department of Energy Science,
Sungkyunkwan University, Suwon 440-746, Korea
E-mail: beomjun@skku.edu

Received 8 May 2009
Published 4 November 2009
Online at stacks.iop.org/JPhysA/42/478001

Abstract

The enhanced binary tree (EBT) is a nontransitive graph which has two percolation thresholds $p_{c 1}$ and $p_{c 2}$ with $p_{c 1}<p_{c 2}$. Our Monte Carlo study implies that the second threshold $p_{c 2}$ is significantly lower than a recent claim by Nogawa and Hasegawa (2009 J. Phys. A: Math. Theor. 42 145001). This means that $p_{c 2}$ for the EBT does not obey the duality relation for the thresholds of dual graphs $p_{c 2}+\bar{p}_{c 1}=1$ which is a property of a transitive, nonamenable, planar graph with one end. As in regular hyperbolic lattices, this relation instead becomes an inequality $p_{c 2}+\bar{p}_{c 1}<1$. We also find that the critical behavior is well described by the scaling form previously found for regular hyperbolic lattices.

PACS numbers: $64.60 . \mathrm{ah}, 02.40 . \mathrm{Ky}, 05.70 . \mathrm{Fh}$

Recently, Nogawa and Hasegawa [1] have reported the two-stage percolation transition on a nonamenable graph which they called the enhanced binary tree (EBT). While the first transition had little ambiguity, they mentioned that the behavior at the second threshold did not look like a usual continuous phase transition.

A quantity of interest was the mass of the root cluster, denoted as s_{0}, where the root cluster was defined as the one including the root node of the EBT. Using this observable, we briefly check the first transition point, $p_{c 1}$, where an unbounded cluster begins to form. As in [2], we have used the Newman-Ziff algorithm [3, 4] and taken averages over 10^{6} samples throughout this work. The number of generations, L, of the EBT defines a typical length scale of the system, and [1] showed the finite-size scaling of s_{0} as

$$
\begin{equation*}
s_{0} / L \propto \tilde{f}_{1}\left[\left(p-p_{c 1}\right) L^{1 / \nu}\right] \tag{1}
\end{equation*}
$$

Figure 1. (a) Mass of the root cluster, s_{0}, divided by L, the number of generations in the EBT. The crossing point indicates the first percolation transition point, $p_{c 1}$, where an unbounded cluster emerges. Inset: Scaling collapse by equation (1) with $p_{c 1}=0.304$ found in [1]. (b) The number of boundary points connected to the root node, denoted as b, also shows a crossing point at $p=p_{c 1}$. Inset: Scaling collapse by equation (2) with the same $p_{c 1}$ as above.
with $v=1$. Figure $1(a)$ confirms both the percolation threshold $p_{c 1}$ and the scaling form, equation (1). Equivalently, one can measure b, the number of boundary points connected to the root node, which becomes finite above $p_{c 1}$ as shown in figure $1(b)$. It also scales as

$$
\begin{equation*}
b \propto \tilde{f}_{2}\left[\left(p-p_{c 1}\right) L^{1 / \nu}\right] \tag{2}
\end{equation*}
$$

with the same exponent v. Comparing this with [2], we see that the percolation transition in the EBT at $p=p_{c 1}$ belongs to the same universality class as that of regular hyperbolic lattices. One may argue that this scaling form actually corresponds to the case of Cayley trees [2]. The convincing results in figure 1 imply that the estimation in [1] for the dual of the EBT, $\bar{p}_{c 1}=0.436$, is also correct.

On the other hand, the second percolation transition at $p=p_{c 2}$ indicates uniqueness of the unbounded cluster. We have thus employed a direct observable to detect this transition, i.e., the ratio between the first and second largest cluster masses [2]. The idea is that even the second largest cluster would become negligible if there can exist only one unique unbounded cluster. Measuring s_{2} / s_{1} in the EBT, where s_{i} means the i th largest cluster mass, we have found the second transition at $p_{c 2} \approx 0.48$ (figure 2(a)), certainly lower than Nogawa and Hasegawa's estimation, $p=0.564$.

As an alternative quantity for $p_{c 2}$, we divide b by the number of all the boundary points, B. This fraction b / B is supposed to become finite above $p_{c 2}[2]$. Based on the Cayley tree result [2], we have assumed that as the system size N varies, one can write down the following asymptotic form:

$$
\begin{equation*}
b / B \sim c_{1} N^{\phi-1}+c_{2} \tag{3}
\end{equation*}
$$

with some constants c_{1} and c_{2} and an exponent ϕ. From the finite-size data, we extrapolate the large-system limit by equation (3), which suggests $p_{c 2} \approx 0.49$ (figure $2(b)$). This is very close to the estimation above from s_{2} / s_{1}. Moreover, in accordance with equation (3), we have suggested the following scaling hypothesis to describe the critical behavior at this transition point [2]:

$$
\begin{equation*}
b / B \propto N^{\phi-1} \tilde{f}_{3}\left[\left(p-p_{c 2}\right) N^{1 / \bar{\nu}}\right] \tag{4}
\end{equation*}
$$

with an exponent $\bar{\nu}$. Applying this hypothesis to EBT data, we see that $\phi=0.84$ and $1 / \bar{v}=0.12$ give a good fit (figure $2(c)$) with the same value of $p_{c 2}=0.48$, where the numeric values of the scaling exponents are again consistent with [2].

Figure 2. (a) Ratio between the second largest cluster mass, s_{2}, and the first largest one, s_{1}. The crossing point lies at $p \approx 0.48$, which implies that only one cluster will remain dominant in the system. (b) The number of boundary points connected to the root node, b, divided by the total number of boundary points, B. The dotted black curve marked by ∞ indicates the extrapolation result from equation (3). (c) Scaling collapse according to equation (4), where we set $p_{c 2}=0.48$, $\phi=0.84$ and $1 / \bar{v}=0.12$.

Figure 3. Mass fraction of the root cluster. The extrapolation result is represented by the dotted black curve named as ∞. The arrow indicates $p=0.564$, predicted as the transition point in [1].

To make a direct comparison to the observation in [1], we have also calculated the mass fraction of the root cluster, s_{0} / N, as a function of p. As above, performing extrapolation to the large system limit, we see that this quantity becomes positive finite at $p \gtrsim 0.49$ (figure 3).

All of these observations suggest that the predicted value of $p_{c 2}$ in [1] is too high, and it seems that this overestimation led them to consider 'discontinuity' since s_{0} / N became already so large at that point as shown in figure 3.

Finally, even though our estimation suggests such a different $p_{c 2}$ that $p_{c 2}+\bar{p}_{c 1}<1$, we note that it does not violate the duality relation proved in [5] for a transitive, nonamenable, planar graph with one end: as Nogawa and Hasegawa correctly pointed out [1], the EBT does not possess transitivity. The inequality $p_{c 2}+\bar{p}_{c 1}<1$ was explicitly verified for a pair of hyperbolic dual lattices $\{7,3\}$ and $\{3,7\}$ in [2]. This inequality means the existence of a narrow region of p between $p_{c 2}$ and $1-\bar{p}_{c 1}$, where one would find a unique unbounded cluster in a given graph whereas infinitely many unbounded clusters in its dual graph. Such a region

Figure 4. Visualization of a triangular hyperbolic lattice projected on the Poincaré disk, where the maximum length from the origin is chosen to be $L=4$. Bonds are randomly occupied with a probability of $p=0.42$, which are colored red, while only the rest of them appear as occupied in the dual lattice, as colored green, so that the dual probability corresponds to $\bar{p}=1-p=0.58$. Note that p lies between $p_{c 2}$ and $1-\bar{p}_{c 1}$, since this structure has $p_{c 2} \approx 0.37$ and its dual has $\bar{p}_{c 1} \approx 0.53$, according to [2]. While most clusters have already been absorbed into the largest red cluster, many of green clusters still have radii comparable to L since $\bar{p}_{c 1}<\bar{p}<\bar{p}_{c 2} \approx 0.72$.
does not exist for a transitive case [5]. A typical state in this region is illustrated in figure 4, which shows a situation with many unbounded clusters of radii comparable to L at the same time as a single unbounded cluster occupies the dominant part of the dual graph.

Acknowledgments

SKB and PM acknowledge the support from the Swedish Research Council with the Grant No. 621-2002-4135. BJK was supported by WCU (World Class University) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R31-2008-000-10029-0). This research was conducted using the resources of High Performance Computing Center North (HPC2N).

References

[1] Nogawa T and Hasegawa T 2009 J. Phys. A: Math. Theor. 42145001
[2] Baek S K, Minnhagen P and Kim B J 2009 Phys. Rev. E 79011124
[3] Newman M E J and Ziff R M 2000 Phys. Rev. Lett. 854104
[4] Newman M E J and Ziff R M 2001 Phys. Rev. E 64016706
[5] Benjamini I and Schramm O 2000 J. Am. Math. Soc. 14487

